
Transit Master
Documentation/Guide

By: Damian Gladysz

File Interaction Schematic

File Purpose Dependencies

ADMIN

AdminRoutePage.php Page that displays selected route
by the admin along with its
associated data and allows for the
editing by clicking on the save
button and sending the form data
over to AdminProcessing.php to be
written to the files

Route.txt (if Route selected)
RouteNames.txt
FileProcessing.php
RouteProcessing.js
AdminRoutePage.php

AdminProcessing.php Is called from
AdminRoutePage.php and does all
the background processing for the
request indicated by what the user
inputted into the form on
AdminRoutePage.php and then
edits and writes into files to make it
happen, afterwards redirecting user
back to AdminRoutePage.php

AdminRoutePage.php
Drivers_Routes.txt
RouteNames.txt
Route.txt (if Route is being
edited)
Route_Update.txt (if Route is
being edited)

Driver

DriverChooser.php Allows for the selection of a driver
in place of a login page and then
sends user to DriverStartRoute.php

Drivers_Routes.txt
DriverStartRoute.php

DriverStartRoute.php Driver side UI displaying route and
its designated schedule that was
assigned to the selected driver,
upon pressing start route, redirects
to DriverRouteInterface.php

RouteProcessing.js
FileProcessing.php
DriverChooser.php
DriverInterfaceProcessing.php

DriverRouteInterface.php Displays all necessary information
for driver to be able to understand
where they are going next along
with giving them the means to
update their location at the touch of
a button along with allowing to undo
accidental inputs, by submitting the
form and running it over to
DriverInterfaceProcessing.php

DriverStartRoute.php
FileProcessing.php
DriverInterfaceProcessing.php
RouteProcessing.js

DriverInterfaceProcessing.php Is called from
DriverRouteInterface.php or
DriverStartRoute.php and does the
background processing for
changing the contents of the
Route_Update.txt files along with
the processing for correcting
accidental inputs

DriverStartRoute.php
FileProcessing.php
DriverRouteInterface.php

User

UserRouteChooser.php Menu for user to choose between
routes available

RouteNames.txt

UserRouteInfo.php Page that displays all information
pertaining to specific route selected
in UserRouteChooser.php

RouteProcessing.js
UserRouteChooser.php
FileProcessing.php
UserRouteChooser.php

Function Files

FileProcessing.php Stores functions that edit the files
that all the pages read from

None

RouteProcessing.js Stores the functions that have to do
with dynamic object creation, time
conversion and a couple of others

None

Text/Data Storage Files

RouteNames.txt Stores names of all routes that
were saved

None

Drivers_Routes.txt Stores all Drivers along with their
assigned routes and bus number

None

Route.txt Stores all information pertaining to
the route signified in the file name
and is edited by admin

None

Route_Update.txt Stores status of Route indicated in
the filename

None

Admin

AdminRoutePage.php

Functions Declared in File:
DataCompiler() (js)
Purpose/Inner-Workings:

Called to prepare form data whenever an admin attempts to submit a form to be sent
over to AdminProcessing.php if no errors are detected, and if they are, notify the
admin. Sends out an alert if no name is assigned, if no weekdays are selected for the
route to run, if a stop name field has nothing inputted, if any of the time table times are
out of order or if an inappropriate input was detected in the timetable. Afterwards, if no
flags were tripped, the function appends 3 hidden inputs to the form before returning
true, “newRouteName”, “RouteContents”, and “newBusAmt”.

CreateInputTable(rows, stops, busses, data) (js)
Purpose/Inner-Workings:

Used to create the original onload form table, all inputs are self explanatory with data
either being the data of the route that was selected or 0 if a new route is being created,
if data is 0, all inputs for the table will be empty, if it's not 0, then the inputs will be filled
with the data of the existing route

DecStop() (js)
Purpose/Inner-Workings:

To decrease amount of columns in the form’s timetable, will not decrease below 1
IncStop() (js)
Purpose/Inner-Workings:

To increase amount of columns in the form timetable
DecRow() (js)
Purpose/Inner-Workings:

To decrease amount of rows by one for each individual bus in the form timetable
IncRow() (js)
Purpose/Inner-Workings:

To increase amount of rows by one for each individual bus in the form timetable
DecBus() (js)
Purpose/Inner-Workings:

To decrease amount of busses in the form timetable by one
IncBus() (js)
Purpose/Inner-Workings:

To increase amount of busses in the form timetable by one
delRoute() (js)
Purpose/Inner-Workings:

To create and a attach a hidden input that if set signifies the deletion of the currently
looked at Route

File Process (not in order of execution, just in order that comes in the file):
1. Create form using the contents of RouteNames.txt that allows user to select between all

created routes
2. If a route has been selected, set flag to 1 and read the associated routes data into a variable

using a function
3. If flag is set to 1, create a hidden input in the main form(id=”routeEditor”) for route editing that

contains the original name of the route in case of editing
4. Create a line of checkboxes signifying the days that the route is active (Mon, Wed, Fri, etc.)
5. If flag is set to one, use contents of file to set the correct checkboxes for the days the route is

currently active
6. If flag equals one, create time table using data in pre-existing route, otherwise create an empty

table
7. Create the encased table editing buttons and hook them up to their respective functions and

labels

8. Create the save button and hook it up to DataCompiler()
9. Create the delete route button and hook it up to delRoute()
10. Get the amount of rows, stops and busses and put that info inside their respective divs for the

table editing buttons

AdminProcessing.php

Functions Declared in File:
drfd() (php)
Purpose:

To delete all assignments of a specific route from the Drivers_Routes.txt file in case of
renaming of route or its deletion

File Process (not in order of execution, just in order that comes in the file):
1. Set flag to 0
2. Check if either newRouteName or delFlag are set

a. If either are set, program continues
b. If not, send the process back to the AdminRoutePage.php

3. If delFlag is set, we delete the route data and update file associated with the route, remove the
route name from the RouteNames file and call drfd()

4. Else if oldRouteName is set, that means we’re overwriting a route, we check if the newly sent
name is the same as the old one

a. If it is, we continue with the program
b. If it isn’t, we delete all traces of the original route name and replace it in the

RouteNames file
We then open the files corresponding to the route and we fill them with the formatted data we
received from AdminRoutePage, we then set flag to 1

5. Else we are creating a whole new route, creating new files from scratch and filling them with
the content we were previously given from AdminRoutePage, after which we set flag to 1

6. We make a form that if flag was set to one, contains the name of the route we just edited or
created

7. The form gets submitted and we get sent back to AdminRoutePage

Driver

DriverChooser.php

Functions Declared in File:
None

File Process (not in order of execution, just in order that comes in the file):
1. Create a form pointing towards the DriverStartRoute file
2. Using the file Drivers_Routes, in a while loop, create a column of submit buttons with the

drivers names on them

DriverStartRoute.php

Functions Declared in File:
timeformswitch() (js)
Purpose:

To switch time format flag in local storage
File Process (not in order of execution, just in order that comes in the file):

1. Check if driver is set
a. If it is, we continue the program
b. If it isn’t, we send the driver to the DriverChooser

2. Create a form that calls current file when submitted so that whenever someone presses the
button, the format of all the times on the page will switch to military time or standard time by
calling timeformswitch() before refreshing the page

3. Check current value of TF in local storage, If null, set TF to 1
4. Check current value of TF in local storage

a. If TF equals 1, the time format button will say standard time
b. Else, the time format button will say military time

5. Set flag to 0 and check if driver has route assigned using using DR()
a. If not, no route was assigned
b. If yes, route was assigned and change flags value to 1

6. Check if flag was set to 1, and if it is, make a form appear that allows for driver to start route
7. Print out schedule table for the individual driver
8. Check to see if page loaded with an errorNotif

a. If yes
i. If errorNotif equals 6, it means routes was completed
ii. If errorNotif equals 4, it means the route wasn’t scheduled for now
iii. If errorNotif equals 1, it means the route was ended by the driver
iv. Else it means a specific function in the code went rogue

DriverRouteInterface.php

Functions Declared in File:
DisplayOverlay() (js)
Purpose:

To display schedule overlay when button is pressed
RidOverlay() (js)
Purpose:

To get rid of schedule overlay when anything besides the back button is pressed
BackButtonCaller() (js)
Purpose:

To create a hidden element within the form and then submit it so that the bus may
reverse its last input

File Process (not in order of execution, just in order that comes in the file):
1. Check if driver, route, and bus are set, and if they are not, send the driver back to

DriverStartRoute.php
2. Create overlay that contains the individual bus drivers schedule and is hidden at beginning
3. If backTrackdata is set, create a button within the overlay that will allow driver to reverse last

input
4. Add event listener to BackButton to make it trigger BackButtonCaller()
5. Create form which will run DriverInterfaceProcessing.php upon submission
6. Fill form with hidden inputs containing the driver, route, and bus
7. If NotifStopFlag is set, add a hidden input to the form containing the stop

DriverInterfaceProcessing.php

Functions Declared in File:
KillPage($code) (php)
Purpose:

When called is used to kill page by redirecting Driver back to DriverStartRoute via form
with an error code which will get interpreted over there

File Process (not in order of execution, just in order that comes in the file):
1. Check if driver, route and bus are set, and if they are not, redirect driver to DriverStartRoute
2. Get bus route status using IBS()
3. Check if flag was set

a. If flag was set
i. Check if flag is 2, and if it is, end route through KillPage() code 1
ii. Else if stop is set, and SU() returns false with stop on the end, KillPage() code

2
iii. Check if flag is 1, and if it is, see if SU() returns, if it does, KillPage() code 3

b. Else if backTrackdata was set
i. Call SUO() and IBS()

1. If bus route status equals neither nr or r, next stop = brs[1] + 1
4. Check if bus route status equals nr or r

a. If it does equal nr, call SU() to change it to r in the file
b. Identify first stop using FSF()
c. If FSF() brought back false, call KillPage() code 4

5. If next stop equals false, call KillPage() code 5
6. Call SI() to identify stop
7. If StopInfo is false, end the route and call KillPage() code 6
8. Create form that leads to specified action with all the information necessary for the

DriverInterface
9. Set NotifStopFlag or backTrackdata form if applicable
10. Submit form

User

UserRouteChooser.php

Functions Declared in File:
None

File Process (not in order of execution, just in order that comes in the file):
1. Create a form pointing towards the UserRouteInfo file
2. Using the file RouteNames, in a while loop, create a column of submit buttons with the routes

names on them

UserRouteInfo.php

Functions Declared in File:
timeformswitch() (js)
Purpose:

To switch time format flag in local storage
File Process (not in order of execution, just in order that comes in the file):

1. Check if route is set, if not, send user to UserRouteChooser
2. If a cookie is set and the file edit time is the same as it was previously, set the flag to one
3. Get all data pertaining to route and convert it for easy use
4. Declare a back button that allows user to go back to UserRouteChooser
5. Read data and write the amount of busses active along with weekdays they’re active on
6. Declare TF if not already declared and give time format switcher its label
7. Create table using CreateSchedTab() and append it to “Table”
8. Create dynamic buttons for the individual bus stops and append them
9. If flag equals 1, call FindETA() to get data on stop that was clicked replace text in designated

div

Function Files
All functions require military time

FileProcessing.php

Functions Declared in File:
RD($route)
Purpose:

Route Data Acquisition
RS($route)
Purpose:

Route Status Acquisition
IBS($route, $bus)
Purpose:

Individual Bus Status
SR($route, $bus)
Purpose:

Stop Route, (puts nr for bus in status file)
SI($route, $stopNum, $bus)
Purpose:

Stop Identifier
FSF($route, $bus)
Purpose:

First Stop Finder, identifies first possible stop for driver
SUO($route, $bus, $dataToInput)
Purpose:

Stop Update Override, allows for overwriting of data with anything desired
SU($route, $bus, $startStop)
Purpose:

Stop Update, moves onto next stop in line, and calls SR() when no more stops are
present

DRDA()
Purpose:

Driver Route Data Acquisition (acquires all file contents)
DR($driver)
Purpose:

Driver Route, identifies route driver was assigned
UDA()
Purpose:

Unassigned Driver Acquisition, lists all drivers which have no route assigned (not
tested)

ADA($route, $numOfDrivers)
Purpose:

Assigned Driver Acquisition, gives all drivers assigned a specific route regardless of
bus number

AD()
Purpose:

All drivers and their routes in an array
DD($driver)
Purpose:

Driver deletion, gets rid of specified driver from Drivers_Routes
DA($driver)
Purpose:

Driver Addition, adds driver to Drivers_Routes

RouteProcessing.php

Functions Declared in File:
CreateSchedTab(BusAmt, Rout, UniStops, Sched, Flag)
Purpose:

Creates a table for the specified route including all the busses that run that route,
UniStops is the amount of columns the table should have, Sched is from the route
data, and Flag is a 1 or 0 dependent on what time format is wanted

CreateSchedTabForBus(BusAmt, Bus, Rout, UniStops, Sched, Flag)
Purpose:

Same as CreateSchedTab, but for individual busses
FindETA(r, s, tstop, Flag)
Purpose:

r is a dictionary created using the RouteDataDictConverter() function and s is a array
created using RouteStatusConverter() with stop being the target stop, and flag being
the time format to give its response in

TimeComp(t1, t2)
Purpose:

if t1 is earlier than or equal to t2, return true, else false
TimeAdd(time, min)
Purpose:

Time is the time you want to add too, and min is the amount of minutes you want to
add to it

TimeDiffMin(time1, time2)
Purpose:

Left side receives later time, and it returns the amount of minutes in between those two
times

RouteDataDictConverter(data)
Purpose:

Turns raw route file data into a dictionary for easier accessibility
RouteStatusConverter(data)
Purpose:

Turns raw status file data into an array
MilitaryToStandard(time, flag)
Purpose:

Turn Military to Standard time if flag is 1

Text/Data Storage
Files

RouteNames.txt

Stores all Route Names separated by newline characters with an empty line at the end

Drivers_Routes.txt

Stores all driver along with their assigned route and bus number to the right of them if they have a route
assigned at all, also has a new line at the end

Route.txt

The order of the data goes weekdays active, amount of stops on route, the names of the stops, and
finally the actual schedules themselves, in the case of multiple on the same route, the weekdays and
stops are shared. The amount of stops for each bus are separated by a “|” and their schedules are
separated by “%”, and the weekdays and schedules are also separated by “|”

Route_Update.txt

Different busses statuses are separated by “&”, nr symbolizes that a bus is not running, r symbolizes a
bus that is running but hasn’t updated their status yet,

